Réactions de Précipitation

Tester le cours

Définir un précipité	Un précipité est un solide neutre possédant la pro- priété d'être peu soluble en solution aqueuse.
Définir la solubilité d'un solide	La solubilité d'un solide est la quantité maximale de ce solide que l'ont peut dissoudre dans $1 L$ de solution. Si une solution est saturée, la quantité de solide passée en solution est égale à la solubilité du solide dans cette solution.
Condition de non précipitation	$Q_{r0} = [A^+]_0 [B^-]_0 < K_s$
Condition de précipitation (ou d'existence du précipité)	$Q_{r0} = [A^+]_0 [B^-]_0 > K_s$
Condition d'équilibre	$Q_{r \operatorname{eq}} = [A^+]_{\operatorname{eq}} [B^-]_{\operatorname{eq}} = K_s$

Tester les Bases

TLB MEE | Application directe

1. On considère un litre de solution saturée en chlorure de plomb. Calculer la concentration en ions ${\rm Pb}^{2+}$ de la solution.

Donnée : $pK_s(PbCl_{2(s)}) = 4,8$

2. Quel volume d'eau doit-employer pour dissoudre complètement une masse $m=2,72~{
m g}$ de sulfate de calcium ?

- $\diamond \ pK_s({\rm CaSO_{4(s)}}) = 4,6 \ ,$
- $\phi M_{\rm Ca} = 40 \ {\rm g \cdot mol^{-1}},$
- $\phi M_{\rm S} = 32 \, \mathrm{g \cdot mol^{-1}}$,
- $\phi M_{\rm O} = 16 \,\mathrm{g \cdot mol^{-1}}.$

TLB ME 2 Précipitation et pH

- 1. Calculer la valeur de pH à partir de laquelle le solide ${\rm Mn(OH)_2}$ précipite pour une solution telle que $\left[{\rm Mn^{2+}}\right]=1,0.10^{-2}~{\rm mol/L}.$
- 2. Même question pour $\rm Mn(OH)_3$ dans une solution telle que $\rm \left[Mn^{3+}\right]=1,0.10^{-2}~mol/L.$
- **3.** Soit une solution contenant des ions $\mathrm{Mn^{2+}}$ et $\mathrm{Mn^{3+}}$ à la même concentration $1,0.10^{-2}~\mathrm{mol/L}$. Dans quel domaine de pH doit-on se placer pour que 99,99% des ions $\mathrm{Mn^{3+}}$ précipitent sans que les ions $\mathrm{Mn^{2+}}$ ne précipitent ?
 - $\diamond pK_{s1}(\mathrm{Mn}(\mathrm{OH})_2) = 12,7 ,$
 - $pK_{s2}(Mn(OH)_3) = 35,7.$

Exercices

Ex | Eaux de lavage

Les eaux de lavage contiennent du carbonate de sodium de formule brute Na₂CO₃, dont l'équation de dissolution dans l'eau s'écrit :

$$Na_2CO_{3(s)} \quad \rightleftarrows \quad 2Na_{(aq)}^+ + CO_{3(aq)}^{2-}.$$

- 1. Si s est la solubilité de ce sel dans l'eau, déterminer s en mole par litre si $K_s = 1, 2$.
- 2. Quelle est la concentration massique (exprimée en gramme par litre) de carbonate de sodium à ne pas dépasser pour éviter le dépôt de sel dans les tubes de l'échangeur?

 - $\diamond M_{\rm O} = 16 \,\mathrm{g \cdot mol^{-1}}$
- Calculer la solubilité s du chlorure d'argent, à 298 K, dans une solution d'acide chlorhydrique à 1 mol/L. Dans l'eau pure, cette solubilité est $s_1 = 1,26.10^{-5} \text{ mol} \cdot \text{L}^{-1}$. Comparer les deux solubilités et conclure.

 $pK_s(AgCl) = 9,8$

Ex 3 Diagramme de solubilité

Tracer le diagramme de solubilité donnant ps (où s est la solubilité) en fonction du pH pour le sulfure d'argent $\mathrm{Ag_2S_{(s)}}$ ($pK_s=50.0$) et le sulfure de Nickel $\mathrm{NiS_{(s)}}$ $(pK_s = 20.0).$

On donne pour $H_2S : pK_{a1} = 7.0$ et $pK_{a2} = 13.0$. On donnera les expressions approchées de s pour les différents domaines d'existence.

- Ex + Le produit de solubilité de l'hydroxyde de calcium (chaux) $Ca(OH)_2$, à 20 °C, est $K_s = 8.10^{-6}$.
- 1. Calculer la solubilité S en mole par litre et s en gramme par litre de l'hydroxyde de calcium dans l'eau pure.
- **2.** Dans un litre (V = 1 L) de solution bien agitée de chlorure de calcium CaCl_2 de concentration molaire $C=0,25~\mathrm{mol}\cdot\mathrm{L}^{-1}$, on ajoute goutte à goutte de la soude de concentration $C' = 6,0 \text{ mol} \cdot L^{-1}$. Soit v le volume de soude à ajouter pour que débute la précipitation de l'hydroxyde de calcium.
- **2.1.** En supposant que v est beaucoup plus petit que V, calculer le pH de début de précipitation.
- **2.2.** En déduire le volume v de soude versé. (Estimer le volume d'une goutte!)

Ex5 Stabilisation par précipitation

On souhaite étudier la stabilisation du cuivre au no +l par précipitation qui illustre plus généralement l'influence de la précipitation sur l'oxydoréduction.

- $\Phi E_1^0(Cu^+/Cu) = 0,52 \text{ V}.$ $\Leftrightarrow E_2^0(Cu^{2+}/Cu^+) = 0.16 \text{ V}.$
- 1. Montrer à partir des diagrammes de stabilité que l'ion Cu^+ est instable. Pour simplifier, on prendra $1 \ \mathrm{mol/L}$ comme concentration frontière. Qu'observe-t-on? Les ions cuivre (I) forment avec les ions iodure I^- le précipité $\mathrm{CuI}_{(\mathrm{s})}$ de produit de solubilité $K_s=10^{-11}$.
- 2. Ecrire l'équation de dissolution du précipité, puis écrire les demi-équations redox pour les couples CuI/Cu et Cu²⁺/CuI.
- 3. En déduire la relation de Nernst pour les couples CuI/Cu et Cu^{2+}/CuI en notant leurs potentiels standards E_3^0 et E_4^0 . Exprimer alors E_3^0 en fonction de pK_s et E_1^0 , et de même E_4^0 en fonction de pK_s et E_2^o . Calculer les valeurs numériques.
- 4. Expliquer en quoi les cuivre (I) sont stabilisés en présence d'iodure.

Exercices pour s'entraîner et/ou pour aller plus loin

Ex 6 Solubilité de l'hydroxyde de zinc

A une solution de chlorure de zinc de concentration $c=1,0.10^{-2} \mathrm{\ mol/L}$, on ajoute une solution concentrée d'hydroxyde de sodium, ce qui permet de négliger la dilution.

- 1. Décrire qualitativement les phénomènes observés.
- **2.** Déterminer les valeurs pH_1 et pH_2 du pH telles que respectivement:
- **2.1.** Le précipité d'hydroxyde de zinc apparaisse.

- **2.2.** Le précipité d'hydroxyde de zinc disparaisse.
- **2.3.** Exprimer la solubilité de $Zn(OH)_2$ en fonction de $h=[\mathrm{H_3O^+}]$ dans le domaine $[pH_1,pH_2]$. En déduire, en justifiant les approximations faites, les relations $\log(s) = f(pH).$
- **3.** Déterminer la valeur du pH lorsque la solubilité est minimale, et la valeur de s correspondante.
- **4.** Tracer l'allure du graphe $\log s = f(pH)$. $pK_s(\text{Zn}(OH)_2(s)) = 16.4 \text{ et } \log \beta_2(\text{Zn}O_2^{2-}) =$ 15, 4.