Réactions acido-basiques

Tester le cours

Donner le nom/formule et la nature des espèces suivantes :	 ⇒ acide sulfurique : H₂SO₄ : diacide (première acidité forte). ⇒ acide nitrique : HNO₃ : acide fort. ⇒ acide chlorhydrique : (H₃O⁺,Cl⁻) : acide fort. ⇒ acide phosphorique : H₃PO₄ : triacide faible. ⇒ acide acétique ou acide carboxylique ou acide éthanoïque : CH₃COOH : acide faible. ⇒ soude : (Na⁺, OH⁻) (obtenue par dissolution de l'hydroxyde de sodium NaOH). ⇒ potasse : (K⁺,OH⁻) (obtenue par dissolution de l'hydroxyde de potassium). ⇒ ion hydrogénocarbonate : HCO₃ - espèce amphotère. ⇒ ammoniac : NH₃ - base faible 	
À quelle condition la réaction est-elle à l'équilibre?	Si $Q = K$ où K est la constante d'équilibre.	
Que vaut la constante d'équilibre?	$K = \prod_{i} a_i (\acute{e}q)^{\nu_i}$	
De quoi dépend la constante d'équilibre?	Que de la température!	
Dans quel cas une réaction équilibrée est-elle : observable en faveur des réactifs? observable en faveur des produits? observable quasi-totale? observable très peu avancée?		
Qu'est ce qu'un électrolyte? Quand est-il dit fort? Exemple? Quand est-il dit faible? Exemple?	C'est une substance qui génère des ions par dissolution dans un solvant. Il est fort s'il est complètement dissocié dans l'eau (HCI) et faible sinon (acide acétique).	
Qu'est ce qu'un acide de Bronsted? Une base de Bronsted?	C'est une espèce susceptible de céder un proton H ⁺ . La base est une espèce susceptible de capter un proton.	
Qu'est ce qu'un ampholyte? Exemple?	Un ampholyte est une substance pouvant se comporter à la fois comme un acide et une base. L'eau par exemple.	
Donner l'expression de la constante d'acidité associée au couple AH/A ⁻ . Au couple BH ⁺ /B?	$K_a = \frac{[A^-][H_3O^+]}{[AH]}$ $K_a = \frac{[B][H_3O^+]}{[BH^+]}$	
Qu'est ce que la réaction d'autoprotolyse de l'eau? Quelle est l'expression de sa constante d'équilibre? Son nom et sa valeur?	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Définir K_b pour le couple BH^+/B et le relier au K_a du couple.	$K_b = \frac{[BH^+][HO^-]}{[B]} = \frac{K_e}{K_a}$	

Qu'est ce que : our acide fort? une base forte? une acide indifférent? une base indifférente? Donner un exemple dans chaque cas.	 un acide dont la réaction avec l'eau est totale : il se dissocie totalement dans l'eau. HCl. une base dont la réaction avec l'eau est totale : elle se protone totalement dans l'eau. RO⁻. l'acide conjugué d'une base forte. ROH. la base conjuguée d'un acide fort. Cl⁻ 	
Qu'est ce que : original un acide faible? original une base faible?	Des espèces qui ne sont ni fortes ni indifférentes.	
Qu'est ce que l'effet nivelant de l'eau?	C'est le fait que les acides et les bases fortes ne peuvent pas être distinguées dans l'eau car leur réaction avec l'eau est toujours totale.	
Quelles sont les couples de l'eau et les $\mathrm{p}K_\mathrm{a}$ associés?	$\phi \ HO^{-}/H_{2}O : 14;$ $\phi \ H_{2}O/H_{3}O^{+} : 0.$	
Définir le pH. Une solution acide, basique, neutre.	$\begin{aligned} pH &= -\log \left(a(\mathrm{H}_3\mathrm{O}^+) \right) \approx -\log[\mathrm{H}_3\mathrm{O}^+]. \\ &\diamond \ pH < 7 \ : \ solution \ acide. \\ &\diamond \ pH > 7 \ : \ solution \ basique. \\ &\diamond \ pH = 7 \ : \ solution \ neutre. \end{aligned}$	
Donner le nom d'une électrode permettant de mesurer le	Electrode de verre et électrode au calomel (Hg_2Cl_2) saturé.	
pH. D'une électrode de référence. Qu'elle est la relation entre la différence de potentiel et le pH?	$\Delta E = a + b \text{pH}.$	
Quel est l'intérêt d'étalonner un pH-mètre? Comme s'y prendre?	L'étalonner permet de déterminer a et b . Pour cela on mesure le pH de deux solutions tampon de pH connu.	
Qu'est ce qu'un domaine de prépondérance et comment cela se traduit-il en terme de pH?	C'est un domaine où l'une des espèces d'un couple est négligeable devant l'autre. On a alors : $ \diamond \ pH > \mathrm{p}K_\mathrm{a} + 1 \ \mathrm{si} \ \mathrm{la} \ \mathrm{base} \ \mathrm{conjugu\'ee} \ \mathrm{pr\'edomine}. $ $ \diamond \ pH < \mathrm{p}K_\mathrm{a} \ \mathrm{-} \ 1 \ \mathrm{si} \ \mathrm{la} \ \mathrm{l'acide} \ \mathrm{conjugu\'e} \ \mathrm{pr\'edomine}. $	
Dans quelle gamme de pH peut-on négliger l'autoprotolyse de l'eau ?	Si le pH n'est pas compris entre 6,5 et 7,5.	
Quel est le pH d'un monoacide fort seul de concentration	$pH = -\log c$ et on vérifie que l'autoprotolye de l'eau est	
c? Quelles sont les vérifications à effectuer? Quel est le pH d'une monobase forte seule de concentration	peu avancée. $pH = pK_e + \log c$ et on vérifie que l'autoprotolye de l'eau	
\widehat{c} ? Quelles sont les vérifications à effectuer ?	est peu avancée.	
Quel est le pH d'un monoacide faible seul de concentration c ? Quelles sont les vérifications à effectuer?	${\sf pH}=1/2(pK_a-\log c)$ et on vérifie que le ${\sf pH}$ trouvé est dans le domaine de prépondérance de l'acide et que l'autoprotolye de l'eau est peu avancée.	
Quel est le pH d'une monobase faible seule de concentration c ? Quelles sont les vérifications à effectuer?	${\sf pOH} = 1/2(pK_b - \log c)$ et on vérifie que le pH trouvé est dans le domaine de prépondérance de la base et que l'autoprotolye de l'eau est peu avancée.	
Qu'est ce que la loi de dilution d'Ostwald?	Un acide (une base) est d'autant plus dissocié qu'il est dilué.	
Quel est le pH d'un ampholyte dans le cas où les approximations usuelles sont valides?	$pH = 1/2(pK_{a1} + pK_{a2})$	
Qu'est ce qu'une solution tampon?	Une solution tampon est une solution dont le pH varie peu par : original appendix de la phase fort (a fortiori faible); original de la phase fort (a fortiori faible); original de la phase fort (a fortiori faible); original de la phase fort (a fortiori faible);	
Comment fabriquer un tampon?	En mélangeant à d'assez fortes concentrations un acide faible et sa base conjuguée en quantités équimolaires. On a alors $pH = pK_a$.	

Définir l'équivalence d'un titrage.	C'est le point théorique où les réactifs de la réaction de titrage ont été introduits en quantité stoechiométrique.		
Quel est l'effet de la dilution lors d'un titrage pHmétrique?	Diluer la solution initiale ne change pas le volume équivalent mais diminue l'amplitude du saut de pH.		
En quel point d'une courbe de titrage retrouve-t-on $\mathrm{pH}=\mathrm{p}K_\mathrm{a}$? Dans quels cas cela n'est-il pas vrai ?	A la demi-équivalence. Cela n'est pas vrai si l'acide est trop dissocié ou la base trop protonée (ce qui peut être lié au pK_a de l'espèce ou à sa concentration via la loi d'Ostwald).		
Qu'est ce que le domaine d'Henderson?	C'est la zone de la courbe de titrage où le pH varie très peu car on a l'acide et la base conjuguée du couple en quantités équivalentes.		
Dans quel cas le saut de pH n'est pas très marqué?	Si la constante thermodynamique de la réaction de titrage est trop faible ($\lesssim 10^4$).		
Quel est le critère pour que les titrages des deux acidités d'un polyacide ou d'un mélange d'acides soient bien séparés?	Si $\Delta \mathrm{p} K_\mathrm{a}$ est supérieur à 4.		
Quel est l'intérêt d'un titrage conductimétrique par rapport à un pH-métrique?	En conductimétrie, il est possible de déterminer assez précisément un volume équivalent même quand la réaction de titrage n'est pas très quantitative (et donc quand le saut de pH est peu marqué).		
Lors d'un titrage suivi par conductimétrie, est-il nécessaire d'étalonner le conductimètre?	Non car on recherche uniquement des ruptures de pentes et pas une valeur absolue de la conductivité de la solution.		
Qu'est ce qu'un indicateur coloré?	C'est un couple acide-base dont les formes acides et basiques conduisent à des solutions de couleurs différentes.		
Comment choisir un indicateur coloré?	Un bon indicateur coloré vire au plus près de l'équiva- lence.		

Tester les Bases

TLB ME I Constante de Réaction

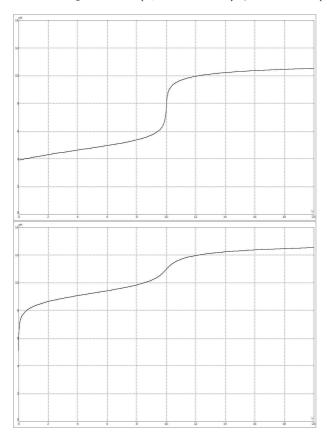
On envisage différents couples acide-base. Écrire pour chaque couple la réaction d'échange d'un proton puis, la constante d'acidité correspondante.

- \diamond CH₃COOH / CH₃COO⁻.

- \diamond ClOH / ClO $^-$.

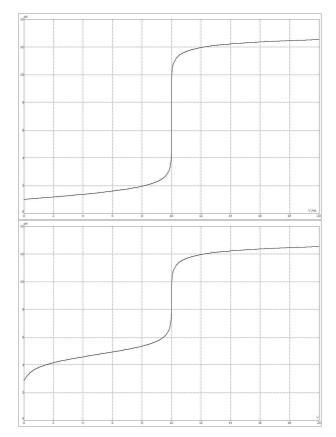
TLB ME 2 Constantes d'équilibre

Ecrire dans chaque cas, la réaction acido-basique possible de plus forte constante d'équilibre et la calculer.


- **1.** $[NH_3]_0 = 0.1 \text{ mol/L}.$
- **2.** $[NH_3]_0 = [NH_4^+]_0 = 0.1 \text{ mol/L}.$
- **3.** $[CH_3COOH]_0 = [ClO^-]_0 = 0.1 \text{ mol/L}$
- **4.** $[HS^-]_0 = [Na^+]_0 = 0.1 \text{ mol/L}.$

Couple	pK_A
$\mathrm{NH_4^+/NH_3}$	9, 2
CH ₃ COOH/CH ₃ COO ⁻	4,8
HClO/ClO-	7,5
$\mathrm{H_2S/HS}^-$	7
${\rm HS^{-}/S^{2-}}$	13

TLB Reconnaissance de titrage


On donne ci-dessous plusieurs courbes de titrage parmi lesquelles:

- \diamond le titrage de CH₃COOH $(0,1 \text{ mol} \cdot L^{-1})$ par NaOH ($0, 1 \text{ mol} \cdot L^{-1}$);
- \diamond le titrage d'HCl $(0,1 \text{ mol} \cdot L^{-1})$ par NaOH (

- $0, 1 \text{ mol} \cdot L^{-1}$);
- \diamond le titrage de CH₃COOH ($10^{-3}~\mathrm{mol\cdot L^{-1}}$) par NaOH ($10^{-3} \text{ mol} \cdot \text{L}^{-1}$);
- \diamond le titrage de NH₄Cl $(0, 1 \text{ mol} \cdot \text{L}^{-1})$ par NaOH ($0, 1 \text{ mol} \cdot L^{-1}$).

Attribuer chaque courbe au titrage associé.

Exercices

Ex | Equilibre acido-basique

Une solution d'acide benzoïque C_6H_5COOH de concentration $C = 10^{-2} \text{ mol/L}$ a un pH de 3,1.

- 1. Montrer que cet acide est faible.
- **2.** Déterminer le pK_a du couple acide-base.

Ex 2 Composition d'une solution

On dissout du carbonate de sodium solide à saturation (concentration totale dissoute notée C_0) dans un litre d'eau. On mesure le pH. On obtient $pH \simeq 8$. Quelle est la composition de la solution (en fonction de C_0)?

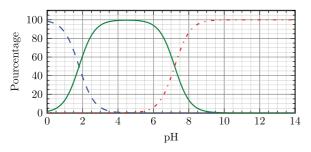
- * $CO_2, H_2O/HCO_3^ pK_{A1} = 6, 3.$
- * HCO_{3}^{-}/CO_{3}^{2-}
- $pK_{A2} = 10, 3.$

Ex 3 Prévision d'un sens d'évolution

On mélange :

- $\diamond~v_1=10,0~\mathrm{mL}$ d'acide éthanoïque
 - $c_1 = 1, 0.10^{-3} \text{ mol/L},$
- $\diamond\ v_2=15,0\ \mathrm{mL}$ d'éthanoate de sodium
 - $c_2 = 2, 0.10^{-1} \text{ mol/L},$
- $\diamond~v_3=15,0~\mathrm{mL}$ de chlorure d'ammonium
 - $c_3 = 1, 0.10^{-1} \text{ mol/L},$
- $\diamond~v_4=10,0~\mathrm{mL}$ d'ammoniaque
 - $c_4 = 1, 5.10^{-3} \text{ mol/L}.$
- 1. Faire la liste des espèces initialement présentes.
- 2. Ecrire l'équation bilan de la réaction qui peut se produire dans le sens de la règle du gamma et donner sa constante d'équilibre.
- 3. Calculer le quotient réactionnel Q à l'état initial et prévoir le sens spontané d'évolution.
- **4.** Quel volume v_5 supplémentaire de $\mathrm{CH_3COOH}$ ($c_1 =$ $1.0.10^{-3} \text{ mol/L}$) faut-il ajouter pour inverser le sens d'évolution?

$$pK_{A1}(CH_3COOH) = 4, 8, pK_{A2}(NH_4^+) = 9, 2.$$


Ex 4 Domaine de prédominance

A quelle condition sur le pH des solutions suivantes, l'espèce chimique citée est-elle prépondérante devant son acide ou sa base conjuguée (selon le cas)?

- **1.** Solution de diméthylammonium : $(CH_3)_2 NH_2^+$
- 2. Solution contenant l'ion hypochlorite : ClO-
- **3.** Solution contenant l'ion éthanoate : CH_3COO^-
- **4.** Solution contenant du phénol : C_6H_5OH .
- **5.** Solution contenant des ions fluorure : F^- .
 - * $(CH_3)_2 NH_2^+ / (CH_3)_2 NH pK_A = 11$
 - * ClOH/ClO⁻ $pK_A = 7.5$
 - * $CH_3COOH/CH_3COO^- pK_A = 4.8$
 - * $C_6H_5OH/C_6H_5O^- pK_A = 10$
 - * HF / F⁻ $pK_A = 3.2$

Ex 5 Courbes de distribution

Les courbes de distribution des différentes formes acidobasiques du diacide sulfureux $\rm H_2SO_3$ son représentées ci-dessous :

- 1. Attribuer les courbes aux différentes espèces.
- 2. Déterminer les pK_a des couples successifs du diacide sulfureux.
- 3. Construire le diagramme de prédominance associé.
- **4.** On considère une solution de pH=2,5 telle que la concentration totale en espèces soufrées soit égale à $c_0=2,0.10^{-3}~\mathrm{mol/L}$. Déterminer les concentrations des différentes espèces présentes.

Ex 6 Acide Fort-Base forte

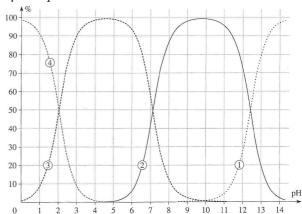
- 1. Calculer le pH et les concentrations des espèces présentes dans une solution d'acide chlorhydrique de concentration $c_a=10^{-2}~{\rm mol/L}.$
- 2. Calculer le pH et les concentrations des espèces présentes dans une solution d'hydroxyde de sodium de concentration $c_b=10^{-1}~{\rm mol/L}$.
- **3.** A $V_a=50~\mathrm{mL}$ de la solution d'acide chlorhydrique de concentration $c_a=10^{-2}~\mathrm{mol/L}$, on ajoute un volume V_b de base forte NaOH de concentration $c_b=10^{-1}~\mathrm{mol/L}$. Calculer le pH et les différentes concentrations des diverses espèces en solution pour $V_b=1.5~\mathrm{mL},\,2.5~\mathrm{mL},\,3.5~\mathrm{mL},\,5~\mathrm{mL},\,7.5~\mathrm{mL}$ et $10~\mathrm{mL}$.

Ex 7 Base faible

Calculer le pH et les concentrations des espèces présentes dans une solution d'ammoniaque pour les concentrations suivantes : $c_d = 10^{-1} \, \mathrm{mol/L}$ et $c_e = 10^{-4} \, \mathrm{mol/L}$. On donne $pK_B = 4, 8$.

Ex 8 Calcul de PH

On dissout $n=1,0.10^{-2}~{\rm mol}$ de H_2S dans $V=1~{\rm L}$ d'eau. Pour les couples H_2S/HS^- et HS^-/S^{2-} les pK_a dans l'eau à $25~{\rm ^{\circ}C}$ sont respectivement de 7 et 13. Calculer le pH de la solution.


Ex 9 Diagramme de distribution

On souhaite tracer le diagramme de distribution du couple ${\rm CH_3COOH/CH_3COO^-}$. $pK_a=4.8$.

- 1. Tracer le diagramme de prédominance de ce couple.
- 2. Exprimer le pourcentage x_1 d'acide éthanoïque et x_2 d'ion éthanoate en fonction de la constante d'acidité et de la concentration $h = [\mathrm{H_3O^+}]$. Le pourcentage est défini par $x_1 = \frac{[\mathrm{CH_3COOH}]}{c_0}$ où $c_0 = [\mathrm{CH_3COOH}] + [\mathrm{CH_3COO^-}]$.
- 3. Tracer l'allure du digramme de distribution.

Ex 10 Triacide

L'acide orthophosphorique H_3PO_4 est un triacide que l'on notera H_3A . Son diagramme de distribution en fonction du pH est donné ci-dessous. Les courbes tracées représentent le pourcentage de chacune des espèces lorsque le pH varie.

- 1. Identifier chacune des courbes.
- **2.** En déduire les constantes pK_{ai} et K_{ai} des couples.
- 3. Déterminer les domaines de pH pour lesquels le fraction d'acide H_3PO_4 est supérieure à 90%, puis la fraction de HPO_4^{2-} est supérieure à 90%.
- 4. Quelle est la composition d'un mélange obtenu par addition d'un volume $V_0=10~\mathrm{mL}$ d'une solution commerciale d'acide orthophosphorique dans de l'eau distillée de manière à obtenir un volume de $2~\mathrm{L}$ à pH=3. La solution commerciale a une densité d=1,71 et contient P=85~% en masse d'acide orthophosphorique. On donne $M(H_3PO_4)=98,0~\mathrm{g/mol}$