- 1. $CH_3COOH_{(aq)} + H_2O_{(liq)} \rightleftharpoons CH_3COO_{(aq)}^- + H_3O_{(aq)}^+$.
- 2. $Cu_{(aq)}^{2+} + 2HO_{(aq)}^{-} \rightleftharpoons Cu(OH)_{2(s)}$.
- **3.** $4Al_{(s)} + 3O_{2(g)} \rightleftharpoons 2Al_2O_{3(s)}$.

$$a_{x} = \frac{[x]}{G}$$

Pour les espèces en solution:

$$a_{x} = \frac{[x]}{G}$$
 au Go est une concentration réf.

$$Q_{7} = \frac{[CH_{3}COO^{-}][H_{3}O^{+}]}{G[CH_{3}COO^{-}]}$$

A l'équilibre:
$$K(T) = Q_{T} e_q = \frac{[CH_3COO]_{eq}[H_3O^{\dagger}]_{eq}}{G_0[CH_3COOH]_{eq}}$$

Kemanques = * On omet souvent 6, mais dans ce cas en perd le fait que On et K sont des grandeurs adimensionnées. * On note, souvent h [[H, O]] * La constante d'équilitre ne dépend que de la température.

$$Q_n = \frac{\rho_o^3}{\rho_o^3}$$

Por = premien portielle en Cr Po = premen référence